1 Star2 Stars3 Stars4 Stars5 Stars (2 votes, average: 4.00 out of 5)
Loading ... Loading ...
Print Print

GATE-2012 ECE Q39 (communication)

by Krishna Sankar on November 17, 2012

Question 39 on communication from GATE (Graduate Aptitude Test in Engineering) 2012 Electronics and Communication Engineering paper.

Q39. The signal  as shown is applied both to  a phase modulator (with  as the phase constant) and a frequency modulator (with as the frequency constant) having the same carrier frequency.

 The ratio  for the same maximum phase deviation is,

(A) 

(B) 

(C) 

(D) 

Solution

To answer this question, let us understand basics of Frequency modulation and Phase modulation. Am referring to the discussion in Section 10 of  Electronic Communication, 4th Edition, Dennis Roddy, John Coolen (buy from Amazon.combuy from Flipkart.com).

Frequency Modulation

In frequency modulation, the modulation signal  will cause a change in the instantaneous carrier frequency and is related as

where

is the frequency deviation constant expressed in hertz/volt (Hz/V) and  is the carrier frequency in Hz.

The angular velocity  radians per second.

Since the rate of change of phase  is the angular velocity,

and so, the instantaneous phase is

.

The frequency modulated carrier signal is

Phase modulation

In phase modulation, the modulation signal  will cause a change in phase and the instantaneous phase is

 where

 is the phase deviation constant expressed in radians/volt  and  is the carrier frequency in radians per second.

The phase modulated carrier signal is

.

 

Now, applying the above equations to solve the problem :

In frequency modulation case, the maximum phase deviation happens when the term hits the maximum.

In phase modulation case, the maximum phase deviation happens when the term  hits the maximum.

.

The ratio is,

 and so,

 

Based on the above, the right choice is (B) 

 

References

[1] GATE Examination Question Papers [Previous Years] from Indian Institute of Technology, Madras http://gate.iitm.ac.in/gateqps/2012/ec.pdf

[2] Electronic Communication, 4th Edition, Dennis Roddy, John Coolen (buy from Amazon.combuy from Flipkart.com).

 

 

 

D id you like this article? Make sure that you do not miss a new article by subscribing to RSS feed OR subscribing to e-mail newsletter. Note: Subscribing via e-mail entitles you to download the free e-Book on BER of BPSK/QPSK/16QAM/16PSK in AWGN.

{ 2 comments… read them below or add one }

Raghava G D November 17, 2012 at 8:21 pm

Though the answer seems to right..mathematically there is a glitch i believe..why have integrated from 0 to t when the signal exists from “- infinity” ?..you should have integrated from “- infinity” to “t” right ?..basically i am just saying proof is not complete..though you will get the same answer when you make it complete :) ..

Sorry for being so critical on math rather than engineering!! :)

Reply

Krishna Sankar November 18, 2012 at 6:18 am

@Raghava: Yes, this point briefly crossed my mind when writing up – however, since we are only concerned with the max() value, later forgot about it. Doing a re-read, seems the integral can be changed from -infinity to t with out affecting any other description.

It feels nice to have you cross-checking the accuracy of the answers. Thanks much ! :)

Reply

Leave a Comment

Previous post:

Next post: