%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% All rights reserved by Krishna Pillai, http://www.dsplog.com
% The file may not be re-distributed without explicit authorization
% from Krishna Pillai.
% Checked for proper operation with Octave Version 3.0.0
% Author : Krishna Pillai
% Email : krishna@dsplog.com
% Version : 1.0
% Date : 6th September 2008
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Script for computing the SNR improvement in
% Rayleigh fading channel with selection diversity
clear
N = 10^4; % number of bits or symbols
% Transmitter
ip = rand(1,N)>0.5; % generating 0,1 with equal probability
s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0
nRx = [1:20];
Eb_N0_dB = [25]; % multiple Eb/N0 values
for jj = 1:length(nRx)
for ii = 1:length(Eb_N0_dB)
n = 1/sqrt(2)*[randn(nRx(jj),N) + j*randn(nRx(jj),N)]; % white gaussian noise, 0dB variance
h = 1/sqrt(2)*[randn(nRx(jj),N) + j*randn(nRx(jj),N)]; % Rayleigh channel
% Channel and noise Noise addition
sD = kron(ones(nRx(jj),1),s);
y = h.*sD + 10^(-Eb_N0_dB(ii)/20)*n;
% finding the power of the channel on all rx chain
hPower = h.*conj(h);
% finding the maximum power
[hMaxVal ind] = max(hPower,[],1);
hMaxValMat = kron(ones(nRx(jj),1),hMaxVal);
% selecting the chain with the maximum power
ySel = y(hPower==hMaxValMat);
hSel = h(hPower==hMaxValMat);
% effective SNR
EbN0EffSim(ii,jj) = mean(hSel.*conj(hSel));
EbN0EffThoery(ii,jj) = sum(1./[1:nRx(jj)]);
end
end
% plot
close all
figure
plot(nRx,10*log10(EbN0EffSim),'bp-','LineWidth',2);
hold on
plot(nRx,10*log10(EbN0EffThoery),'gd-','LineWidth',2);
axis([1 20 0 6])
grid on
legend('theory', 'sim');
xlabel('Number of receive antenna');
ylabel('effective SNR, dB');
title('SNR improvement with Selection Combining');