**- DSP log - http://www.dsplog.com -**

Peak to Average Power Ratio for OFDM

Posted By __Krishna Sankar__ On February 24, 2008 @ 7:51 am In __OFDM__ | __272 Comments__

Let us try to understand peak to average power ratio (PAPR) and its typical value in an OFDM system specified per IEEE 802.11a specifications ^{[1]}.

The peak to average power ratio for a signal is defined as

, where

corresponds to the conjugate operator.

Expressing in deciBels,

.

Consider a sinusoidal signal

having the period .

The peak value of the signal is

.

The mean square value of the signal is,

.

Given so, the PAPR of a single sine tone is,

.

**Figure: Wave form of single sine tone**

% Example Matlab/Octave script clear all close all xt = sin(2*pi*1*[0:1/64:0.999]); plot(xt,'b.-','LineWidth',4) grid on xlabel('sample number') ylabel('amplitude') title('sine wave') meanSquareValue = xt*xt'/length(xt) peakValue = max(xt.*conj(xt))

Consider a sinusoidal signal

having the period .

The peak value of the signal is

.

The mean square value of the signal is,

.

Given so, the PAPR of a single complex sinusoidal tone is,

.

**Figure: Waveform a single complex sinusoidal **

close all clear all % defining a signal in frequency domain % subcarrier +1 alone xF = [zeros(1,6) zeros(1,26) 0 1 zeros(1,25) zeros(1,5) ]; xt = 64*ifft(fftshift(xF)); meanSquareValue = xt*xt'/length(xt) peakValue = max(xt.*conj(xt)) plot(real(xt),'b','LineWidth',2) hold on plot(imag(xt),'g','LineWidth',2) xlabel('sample number') ylabel('amplitude') title('complex sinusoidal') legend('real', 'imag') grid on

From the previous post (here), we have learned that an OFDM signal is the sum of multiple sinusoidals having frequency seperation where each sinusoidal gets modulated by independent information . Mathematically, the transmit signal is,

For simplicity, let us assume that for all the subcarriers. In that scenario, the peak value of the signal is,

.

The mean square value of the signal is,

.

Given so, the peak to average power ratio for an OFDM system with subcarriers and all subcarriers are given the same modulation is,

.

It is reasonably intuitive that the above value corresponds to the maximum value of PAPR (when all the subcarriers are equally modulated, all the subcarriers align in phase and the peak value hits the maximum).

Per the IEEE 802.11a specifications ^{[1]}, we have used subcarriers. Given so, the maximum expected PAPR is 52 (around 17dB!!). However, thanks to the scrambler, all the subcarriers in an OFDM symbol being equally modulated is unlikely.

Using a small script, the cumulative distribution of PAPR from each OFDM symbol, modulated by a random BPSK signal is obtained.

Click here to download ^{[2]}.

Figure: Cumulative distribution (CDF) plot of PAPR from a random BPSK signal

As can be observed, the observed PAPR seems to be distributed from around +3.5dB to a maximum value of 10dB.

[802.11A] Wireless LAN Medium Access Control (MAC) and Physical (PHY) Layer specifications – High speed physical layer in 5GHz band ^{[1]}

Hope this helps.

Krishna

Article printed from DSP log: **http://www.dsplog.com**

URL to article: **http://www.dsplog.com/2008/02/24/peak-to-average-power-ratio-for-ofdm/**

URLs in this post:

[1] IEEE 802.11a specifications: **http://standards.ieee.org/getieee802/download/802.11a-1999.pdf**

[2] download: **http://www.dsplog.com/db-install/wp-content/uploads/2008/02/paprofdmbpsk.m**

[3] click here to SUBSCRIBE : **http://www.feedburner.com/fb/a/emailverifySubmit?feedId=1348583&loc=en_US**

Click here to print.

Copyright © 2007-2012 dspLog.com. All rights reserved. This article may not be reused in any fashion without written permission from http://www.dspLog.com.